Molecular Composition and Ultrastructure of the Caveolar Coat Complex
نویسندگان
چکیده
Caveolae are an abundant feature of the plasma membrane of many mammalian cell types, and have key roles in mechano-transduction, metabolic regulation, and vascular permeability. Caveolin and cavin proteins, as well as EHD2 and pacsin 2, are all present in caveolae. How these proteins assemble to form a protein interaction network for caveolar morphogenesis is not known. Using in vivo crosslinking, velocity gradient centrifugation, immuno-isolation, and tandem mass spectrometry, we determine that cavins and caveolins assemble into a homogenous 80S complex, which we term the caveolar coat complex. There are no further abundant components within this complex, and the complex excludes EHD2 and pacsin 2. Cavin 1 forms trimers and interacts with caveolin 1 with a molar ratio of about 1∶4. Cavins 2 and 3 compete for binding sites within the overall coat complex, and form distinct subcomplexes with cavin 1. The core interactions between caveolin 1 and cavin 1 are independent of cavin 2, cavin 3, and EHD2 expression, and the cavins themselves can still interact in the absence of caveolin 1. Using immuno-electron microscopy as well as a recently developed protein tag for electron microscopy (MiniSOG), we demonstrate that caveolar coat complexes form a distinct coat all around the caveolar bulb. In contrast, and consistent with our biochemical data, EHD2 defines a different domain at the caveolar neck. 3D electron tomograms of the caveolar coat, labeled using cavin-MiniSOG, show that the caveolar coat is composed of repeating units of a unitary caveolar coat complex.
منابع مشابه
VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro.
VIP21-caveolin is a membrane protein, proposed to be a component of the striated coat covering the cytoplasmic surface of caveolae. To investigate the biochemical composition of the caveolar coat, we used our previous observation that VIP21-caveolin is present in large complexes and insoluble in the detergents CHAPS or Triton X-114. The mild treatment of these insoluble structures with sodium d...
متن کاملArchitecture of the caveolar coat complex
Caveolae are specialized membrane domains that are crucial for the correct function of endothelial cells, adipocytes and muscle cells. Caveolins and cavins are both required for caveolae formation, and assemble into a large (80S) caveolar coat complex (80S-CCC). The architecture of the 80S-CCC, however, has not been analyzed. Here, we study the 80S-CCC isolated from mammalian cells using negati...
متن کاملVesicle and organelle formation: making connections
Vesicle assembly in space and time Two talks used technological advances in light and electron microscopy to examine the formation of vesicles from the plasma membrane. In yeast, endocytosis proceeds via clathrin-tipped tubular invaginations. Andrea Picco (Kaksonen laboratory, European Molecular Biology Laboratory) used live-cell imaging to reconstruct the dynamic organization of the yeast endo...
متن کاملIsoforms of caveolin-1 and caveolar structure.
The relationship between caveolin-1 isoforms alpha and beta and caveolar ultrastructure was studied. By immunofluorescence microscopy of human fibroblasts, caveolae were observed as dots positive for caveolin-1, but many dots labeled by an antibody recognizing both isoforms (anti-alphabeta) were not labeled by another antibody specific for the alpha isoform (anti-alpha). Immunogold electron mic...
متن کاملDeciphering caveolar functions by syndapin III KO-mediated impairment of caveolar invagination
Several human diseases are associated with a lack of caveolae. Yet, the functions of caveolae and the molecular mechanisms critical for shaping them still are debated. We show that muscle cells of syndapin III KO mice show severe reductions of caveolae reminiscent of human caveolinopathies. Yet, different from other mouse models, the levels of the plasma membrane-associated caveolar coat protei...
متن کامل